
CSC363 Tutorial 11
almost done!

Paul “sushi enjoyer” Zhang

University of Chungi

April 2, 2021

1 / 18

Learning objectives this tutorial

By the end of this tutorial, you should...
Have one more NP-complete problem added to your “NP-complete
problems” toolkit.
Add a problem to your “NP-hard problems” toolkit, even though it’s
kinda useless since the problem isn’t even computable.
Probably work on assignment 5? Oh wait, you probably have other
courses with higher priority... :(
Be scared for the final exam! D:
Feel like sushi enjoyer is just being sarcastically enthusiastic about
CSC363 material when he himself hates it.

Big Chungus certified readings: chapter 8 probably, but it isn’t really
necessary tbh.

2 / 18

do you like proving NP-completeness? D:
well too bad! you’ll have to do it for the upcoming problem set.

3 / 18

Set cover

We will now describe the set cover problem and prove it is NP-complete,
because why not.

Suppose we are given a set of elements U (called the universe), and a
collection S = {S1, . . . , Sn} of subsets of U such that (brace yourself,

⋃
)

n⋃
i=1

Si = U.

A set cover of U is a subcollection S ′ = {Si1 , Si2 , . . . , Sik} ⊆ S such that

k⋃
m=1

Sik = U.

For example, if U = {1, 2, 3, 4, 5}, and our collection of sets is
S = {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}}, then {{1, 2, 3}, {4, 5}} is a set cover.

4 / 18

Set cover

Task: Let U = { , , , , , }, and

S = {{ , }, { , , }, { , , }, { , }, { }, { , , }}.

Find the smallest set cover of U.
Answer: The smallest set cover is {{ , , }, { , , }}, which is of
size 2.

5 / 18

Set cover is NP-complete!

Now given a universal set U, a collection S = {S1, . . . , Sn} of subsets of
U, and a natural number k, the set cover problem asks you whether it is
possible to find a set cover for U of size k. In language form, it would be

Set-Cover ={(U,S, k) : U is a set, S is a collection of subsets of U,
and there is a set cover of U of size k}.

Turns out this problem is NP-complete! Let’s prove it’s NP first.
Task: Prove that Set-Cover is NP.

6 / 18

Set cover is NP-complete!

Task: Prove that Set-Cover is NP.

Answer: We can build a poly-time verifier V that checks whether a given
subcollection S ′ of S is a set cover for U.

V (U,S, k,S ′) : Check if S ′ ⊆ S

Check if
⋃

Si ∈S′

Si = U

Check if |S ′| = k
Accept iff all of the above are true

Now we prove it is NP-complete. Remember how we can prove something
is NP-complete by showing that some known NP-complete problem
reduces to it?

7 / 18

Set cover is NP-complete!

Now we prove it is NP-complete. Remember how we can prove something
is NP-complete by showing that some known NP-complete problem
reduces to it?
Task: Show that Set-Cover ∈ NP by proving Vertex-Cover ≤p Set-Cover.1

1Recall: this involves converting an instance of the vertex cover problem into an
instance of set cover problem in poly-time.

8 / 18

Set cover is NP-complete!

Answer: Suppose we are given an instance (G , k) of the vertex cover
problem. We may transform it into a set cover problem (UG ,SG , kG) with
the property that

(G , k) ∈ Vertex-Cover⇔ (UG ,SG , kG) ∈ Set-Cover.

Let v1, . . . , vn be the vertices of G , and e1, . . . , em the edges of G . Define
UG ,SG , kG as follows:

UG will consist of all the edges {e1, . . . , em}.
For each vertex vi , let Si be the set of edges that vi touches. Then
let SG = {S1, . . . , Sn}.
kG = k.

This transformation takes poly-time with respecc to the size of (G , k). We
claim (G , k) ∈ Vertex-Cover⇔ (UG ,SG , kG) ∈ Set-Cover.

9 / 18

Set cover is NP-complete!
We’ll “prove” (G , k) ∈ Vertex-Cover⇔ (UG ,SG , kG) ∈ Set-Cover via
example.2 Suppose k = 2 and G is the following graph:

v1

v2

v3

v4 v5

e1

e2

e3 e4

e5

UG will consist of all the edges {e1, . . . , em}.
For each vertex vi , let Si be the set of edges that vi touches. Then
let SG = {S1, . . . , Sn}.
kG = k.

Task: Find UG , SG , and kG for this instance of the vertex cover problem.
2Please, please, please, do not do this in any proof course. It’s just easier for

illustrate with an example.
10 / 18

Set cover is NP-complete!

v1

v2

v3

v4 v5

e1

e2

e3 e4

e5

UG = {e1, e2, e3, e4, e5}.
We have S1 = {e1, e2, e3}, S2 = {e1}, S3 = {e2, e4},
S4 = {e3, e4, e5}, S5 = {e5}. So

SG = {S1, . . . , S5} = {{e1, e2, e3}, {e1}, {e2, e4}, {e3, e4, e5}, {e5}}.

kG = 2 since k = 2.
Task: Find a vertex cover for G . What would the corresponding set cover
be?

11 / 18

Set cover is NP-complete!

v1

v2

v3

v4 v5

e1

e2

e3 e4

e5

UG = {e1, e2, e3, e4, e5}.
We have S1 = {e1, e2, e3}, S2 = {e1}, S3 = {e2, e4},
S4 = {e3, e4, e5}, S5 = {e5}. So

SG = {S1, . . . , S5} = {{e1, e2, e3}, {e1}, {e2, e4}, {e3, e4, e5}, {e5}}.

kG = 2 since k = 2.
v1, v4 form a vertex cover of G . S ′ = {S1, S4} forms a set cover of U.

12 / 18

Break time!

No sushi juice this time. But you get to ask me one question, about pretty
much anything (as long as it’s appropriate i guess lol).

13 / 18

no more brake time with uwu

Alright so we now have one more problem that we know is NP-complete.
I’m so excited! Anyone? ;-;

Let’s add an NP-hard problem to the back of our memory! This one is
actually a bit tricky to prove though...

Task: What does HP stand for?

14 / 18

no more brake time with uwu

Task: What does HP stand for?
Answer: Helo Phish.

HP = {(M, w) : M is a Turing machine that halts on input w}.

We will prove HP is NP-Hard by showing 3SAT ≤p HP.3

3In fact, any computable language A satisfies A ≤p HP! You can just adapt the
proof I’m about to show.

15 / 18

HP is NP-Hard

HP = {(M, w) : M is a Turing machine that halts on input w}.
We will construct the following reduction of 3SAT to HP. Suppose ϕ is a
given instance of 3SAT. Construct the following Turing machine M:

M(ϕ) : Check whether ϕ ∈ 3SAT via brute force.
If ϕ ∈ 3SAT:

Accept
Else:

Loop
Notice that it takes constant time to construct M, since the code of M
doesn’t depend on ϕ at all. It’s like writing a program that writes a fixed
Python script into a text file. Also, we don’t run M; we only construct it,
and bypass the exponential time computation needed to check whether
ϕ ∈ 3SAT via brute force. Again, it’s like writing some really slow code to
a text file but not running it. 16 / 18

HP is NP-Hard

HP = {(M, w) : M is a Turing machine that halts on input w}.

We will construct the following reduction of 3SAT to HP. Suppose ϕ is a
given instance of 3SAT. Construct the following Turing machine M:

M(ϕ) : Check whether ϕ ∈ 3SAT via brute force.
If ϕ ∈ 3SAT:

Accept
Else:

Loop

Task: Show ϕ ∈ 3SAT⇔ (M, ϕ) ∈ HP, where M is as above. Then
convince yourself that we can replace 3SAT with any computable
language, and the same proof would work.

17 / 18

buy

helo fish.jpg is sad to see you go ;-;
only one more week left! D:

18 / 18

